Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pregnancy Childbirth ; 24(1): 226, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561737

ABSTRACT

AIM: To investigate the differences in gut microbiota composition among nonpregnant women of reproductive age, healthy pregnant women, and gestational diabetes (GD) patients. METHODS: A total of 45 outpatients were enrolled and divided into three groups: nonpregnant women of reproductive age (control group, n = 23), healthy pregnant women (normal group, n = 10), and GD patients (GD group, n = 12). Faecal samples were collected and sequenced using 16S rRNA gene sequencing to analyse the microbial composition. RESULTS: (1) Pregnant patients exhibited an increase in the abundance of Streptococcus (Pnormal = 0.01286, PGD = 0.002965) and Blautia (Pnormal = 0.0003924, PGD = 0.000246) but a decrease in the abundance of Roseburia (Pnormal = 0.0361, PGD = 0.007075), Phascolarctobacterium (Pnormal = 0.0003906, PGD = 0.02499) and Lachnoclostridium (Pnormal = 0.0003906, PGD = 0.03866). (2) Compared with healthy pregnant women, GD patients had an excessive increase in Streptococcus abundance and decrease in Roseburia abundance. The increase in Blautia abundance and the decrease in Phascolarctobacterium and Lachnoclostridium abundance in GD patients were less than those in healthy pregnant women. (3) The abundance of Faecalibacterium prausnitzii decreased significantly in GD patients (PGD = 0.02985) but not in healthy pregnant patients (Pnormal = 0.1643). CONCLUSIONS: Abnormal increases and decreases in the abundances of gut microbiota components, especially Faecalibacterium prausnitzii, were observed in GD patients. TRIAL REGISTRATION: The cross-sectional research was conducted in accordance with the Declaration of Helsinki, and approved by Sir Run Run Shaw Hospital Clinical Trials and Biomedical Ethics Committee. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR1900026164, 24/09/2019, http://www.chictr.org.cn/showproj.aspx?proj=43,455 ).


Subject(s)
Diabetes, Gestational , Gastrointestinal Microbiome , Female , Humans , Pregnancy , Cross-Sectional Studies , Diabetes, Gestational/microbiology , Feces/microbiology , RNA, Ribosomal, 16S/genetics
2.
Am J Cancer Res ; 14(2): 407-428, 2024.
Article in English | MEDLINE | ID: mdl-38455407

ABSTRACT

Thyroid cancer can be classified into three different types based on the degree of differentiation: well-differentiated, poorly differentiated, and anaplastic thyroid carcinoma. Well-differentiated thyroid cancer refers to cancer cells that closely resemble normal thyroid cells, while poorly differentiated and anaplastic thyroid carcinoma are characterized by cells that have lost their resemblance to normal thyroid cells. Advanced thyroid carcinoma, regardless of its degree of differentiation, is known to have a higher likelihood of disease progression and is generally associated with a poor prognosis. However, the process through which well-differentiated thyroid carcinoma transforms into anaplastic thyroid carcinoma, also known as "dedifferentiation", has been a subject of intensive research. In recent years, there have been significant breakthroughs in the treatment of refractory advanced thyroid cancer. Clinical studies have been conducted to evaluate the efficacy and safety of molecular targeted drugs and immune checkpoint inhibitors in the treatment of dedifferentiated thyroid cancer. These drugs work by targeting specific molecules or proteins in cancer cells to inhibit their growth or by enhancing the body's immune response against the cancer cells. This article aims to explore some of the possible mechanisms behind the dedifferentiation process in well-differentiated thyroid carcinoma. It also discusses the clinical effects of molecular targeted drugs and immune checkpoint inhibitors in thyroid cancer patients with different degrees of differentiation. Furthermore, it offers insights into the future trends in the treatment of advanced thyroid cancer, highlighting the potential for improved outcomes and better patient care.

3.
J Microbiol ; 58(11): 926-937, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32997305

ABSTRACT

Human intestinal microbiota is affected by the exogenous microenvironment. This study aimed to determine the effects of cigarettes and alcohol on the gut microbiota of healthy men. In total, 116 healthy male subjects were enrolled and divided into four groups: non-smoking and non-drinking (Group A), smoking only (Group B), drinking only (Group C), and smoking and drinking combined (Group D). Fecal samples were collected and sequenced using 16S rRNA to analyze the microbial composition. Short-chain fatty acid (SCFAs) levels in feces were determined by gas chromatography. We found that cigarette and alcohol consumptions can alter overall composition of gut microbiota in healthy men. The relative abundances of phylum Bacteroidetes and Firmicutes and more than 40 genera were changed with cigarette and alcohol consumptions. SCFAs decreased with smoking and alcohol consumption. Multivariate analysis indicated that when compared with group A, group B/C/D had higher Bacteroides, and lower Phascolarctobacterium, Ruminococcaceae_UCG-002, Ruminococcaceae_UCG-003, and Ruminiclostridium_9 regardless of BMI and age. Additionally, the abundance of Bacteroides was positively correlated with the smoking pack-year (r = 0.207, p < 0.05), the abundance of predicted pathway of bacterial toxins (r = 0.3672, p < 0.001) and the level of carcinoembryonic antigen in host (r = 0.318, p < 0.01). Group D shared similar microbial construction with group B, but exerted differences far from group C with lower abundance of Haemophilus. These results demonstrated that cigarette and alcohol consumption separately affected the intestinal microbiota and function in healthy men; furthermore, the co-occurrence of cigarette and alcohol didn't exacerbate the dysbiosis and cigarette played the predominated role on the alteration.


Subject(s)
Alcohol Drinking/adverse effects , Cigarette Smoking/adverse effects , Gastrointestinal Microbiome , Adult , Aged , Bacteria/classification , Bacteria/isolation & purification , Fatty Acids, Volatile/metabolism , Feces/microbiology , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult
4.
FASEB J ; 34(6): 8544-8557, 2020 06.
Article in English | MEDLINE | ID: mdl-32356314

ABSTRACT

MicroRNAs (miRNAs) play important roles in posttranscriptional regulation and may serve as targets for the diagnosis and treatment of cancers. Nevertheless, a comprehensive understanding of miRNAs profiles in gastric cancer progression is still lacking. Here, we report that miR-129-5p is downregulated in gastric cancer by analyzing TCGA database (n = 41) and clinical tumor samples (n = 60). MiR-129-5p transfection suppressed gastric cancer cell proliferation through inducing G1 phase arrest in vitro and inhibit xenograft tumor growth in vivo. MiR-129-5p directly targeted the 3' untranslated regions (3' UTR) of HOXC10 mRNA and downregulated its expression. Importantly, miR-129-5p could reverse the oncogenic effect induced by HOXC10. We systemically screened the downstream target of HOXC10 by ChIP sequencing, and found that HOXC10 could transcriptionally regulate the expression of Cyclin D1 and facilitate G1/S cell cycle transition. Notably, high levels of HOXC10 and Cyclin D1 were related with poor prognosis of gastric cancer patients (n = 90). These findings reveal a novel role of miR-129-5p/HOXC10/Cyclin D1 axis in modulating cell cycle and gastric tumorigenesis, which might provide potential prognostic biomarkers and therapeutic targets for gastric cancer patients.


Subject(s)
Cell Cycle Checkpoints/genetics , Cyclin D1/genetics , Homeodomain Proteins/genetics , MicroRNAs/genetics , Stomach Neoplasms/genetics , 3' Untranslated Regions/genetics , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Down-Regulation/genetics , Female , G1 Phase/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Oncogenes/genetics , S Phase/genetics , Stomach/pathology
5.
Aging (Albany NY) ; 12(10): 9173-9187, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32452830

ABSTRACT

Type 2 resistant starch (RS2) is a fermentable dietary fiber conferring health benefits. We investigated the effects of RS2 on host, gut microbiota, and metabolites in aged mice on high-fat diet. In eighteen-month old mice randomly assigned to control, high-fat (HF), or high-fat+20% RS2 (HFRS) diet for 16 weeks, RS2 reversed the weight gain and hepatic steatosis induced by high-fat diet. Serum and fecal LPS, colonic IL-2 and hepatic IL-4 mRNA expressions decreased while colonic mucin 2 mRNA and protein expressions increased in the HFRS compared to the HF and the control group. 16s rRNA sequencing of fecal microbial DNA demonstrated that RS2 decreased the abundance of pathogen taxa associated with obesity, inflammation, and aging including Desulfovibrio (Proteobacteria phylum), Ruminiclostridium 9, Lachnoclostridium, Helicobacteria, Oscillibacter, Alistipes, Peptococcus, and Rikenella. Additionally, RS2 increased the colonic butyric acid by 2.6-fold while decreasing the isobutyric and isovaleric acid levels by half compared to the HF group. Functional analyses based on Clusters of Orthologous Groups showed that RS2 increased carbohydrate while decreasing amino acid metabolism. These findings demonstrate that RS2 can reverse weight gain, hepatic steatosis, inflammation, and increased intestinal permeability in aged mice on high-fat diet mediated by changes in gut microbiome and metabolites.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Inflammation/metabolism , Intestinal Absorption/drug effects , Resistant Starch/pharmacology , Aging/physiology , Animals , Colon/drug effects , Female , Liver/drug effects , Mice , Mice, Inbred C57BL , Weight Gain/drug effects
6.
Oncol Lett ; 19(2): 1375-1383, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31966069

ABSTRACT

Thyroid cancer (TC) is one of the most common types of malignancy of the endocrine-system. At present, there is a lack of effective methods to predict neck lymph node metastasis (LNM) in TC. The present study compared the expression profiles from The Cancer Genome Atlas between N1M0 and N0M0 subgroups in each T1-4 stages TC in order to identify the four groups of TC LNM-associated differentially expressed genes (DEGs). Subsequently, DEGs were combined to obtain a total of 493 integrated DEGs by using the method of Robust Rank Aggregation. Furthermore, the underlying mechanisms of LNM were investigated. The results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that the identified DEGs may promote LNM via numerous pathways, including extracellular matrix-receptor interaction, PI3K-AKT signaling pathway and focal adhesion. Following construction of a protein-protein interaction network, the significance score for each gene was calculated and seven hub genes were screened, including interleukin 6, actinin α2, collagen type I α 1 chain, actin α1, calbindin 2, thrombospondin 1 and parathyroid hormone. These genes were predicted to serve crucial roles in TC with LNM. The results from the present study could therefore improve the understanding of LNM in TC. In addition, the seven DEGs identified may be considered as potential novel targets for the development of biomarkers that could be used in the diagnosis and therapy of TC.

SELECTION OF CITATIONS
SEARCH DETAIL
...